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Abstract

For the input of the correct intensity-data-collection
parameters - the scan width and the number of steps -
the expected full widths at half-maximum of the
Bragg intensity profiles (FWHM) for the whole 6
range under consideration must be known. These
FWHMs depend on the divergence of the incident
synchrotron beam, on the monochromator and on the
mosaic structure of the sample used. They are also
affected by absorption and extinction. A simple but
very effective resolution function for a triple-crystal
diffractometer, applicable also to single- and double-
crystal diffractometers, is given, taking all the depen-
dences mentioned above into account. The calculated
FWHMSs are compared with the measured ones of
three different single-crystal samples, namely the
FWHMs of a YIG sphere and an Si sphere, obtained
at various wavelengths in the range 0.3 to 2.2 A with
the new Huber four-circle diffractometer set up
at HASYLAB and the FWHMs of a CaF, sphere,
given in the literature and measured with the old
five-circle Stoe diffractometer at HASYLAB (DESY,
Hamburg, Germany). It is shown that, with use of
the proposed resolution function, the beam charac-
teristics - divergence and wavelength spread - as well
as the characteristics of the samples - mosaic spread
and mosaic block size - can be determined from com-
parison with experimental FWHMs, measured at
different wavelengths.

Introduction

Usually, single-crystal diffractometer set-ups consist
in a conventional X-ray tube as the beam source, a
single-crystal monochromator and the small single-
crystal sample bathed in the beam. Because of the
dominant contributions of the divergence and
wavelength spread to the peak widths in such equip-
ment, the scan range A6 for Bragg intensity measure-
ments for these diffractometers is usually calculated
in very good agreement with the experiment using
the resolution function

A6 =A+ Btan 6, (1)

where the constant term A in (1) is assumed to depend
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on the crystal shape and mosaicity and on the diver-
gence of the primary beam (A and A6 are in radians).
The second term B =(A, —A,)/A, takes into account
the widening of the reflection due to the split in the
Bragg angle 6, caused by the Ka,, components A, ,
of the wavelength A of the incident beam (Furnas,
1957; Enraf-Nonius, 1982).

However, at a synchrotron-radiation source, the
incident X-ray beam has a very small divergence and
the monochromator usually consists in two perfect
single crystals. Because of the continuous spectrum
of the incident beam, the X-ray after monochromatiz-
ation is truly monochromatic with a wavelength
spread of AA/A, which depends on the divergence of
the beam and on the mosaicity of the monochromator
crystals. AA/A is small compared with the term B in
(1). At a synchrotron-radiation source, therefore,
neither the divergence 8 nor the wavelength spread
AA/ A of the beam impinging on the sample dominate
the full width at half-maximum (FWHM) of the Bragg
intensity profiles, but the mosaicity of the sample
crystal affects the FWHM to the same order of magni-
tude as the beam characteristics. Thus (1) cannot be
used.

The general theory of the double-crystal diffrac-
tometer is discussed in detail by, for example,
Compton & Allison (1935), Zachariasen (1945) and
Laue (1960). The resolution function of a triple-
crystal diffractometer is given by, for example,
Bubakova, Drahokoupil & Fingerland (1961). Both
the double- and triple-crystal spectrometers are
described fully by Pinsker (1978). Laktionov et al.
(1989) complemented the instrumental function of a
four-circle X-ray diffractometer with the introduction
of the crystal mosaicity. The formulas given by all
these authors for the Bragg intensity profiles are not
easy to handle for two reasons: firstly, many intensity
distribution functions, which are not known exactly
in a routine intensity-data-collection experiment, are
required for calculation; secondly, the evaluation of
these expressions necessitate time-consuming compu-
tations of integrals, even if approximations to the
intensity distributions are used.

Hoche et al. (1986) therefore used
A6 =(A*+ B*tan 6,)"? (2)
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for least-squares fitting of calculated to measured
FWHMs of Bragg reflections obtained at the syn-
chrotron source at HASYLAB. The parameter A in
(2) was interpreted as a function of the beam
divergence and the mosaic spread of the sample and
the parameter B was assumed to be mainly due to
the wavelength spread 4A/A.

Rossmanith (1992a) (R-92 hereafter) proposed a
new concept for the calculation of the FWHMs for
single and multiple diffraction within an ideally
mosaic crystal sample. It was shown that this concept
makes possible an approximate evaluation of
FWHMs, in excellent agreement with measured ones,
without making any assumptions about the intensity
distribution functions involved in the experiment. An
extension of this concept for the successive diffraction
by two or more crystals, the final one having any
degree of perfection or mosaicity, will be given in the
following.

The resolution function of the triple-crystal
diffractometer

The arrangement of the triple-crystal system used at
the synchrotron-radiation source at HASYLAB is
given in Fig. 1. The first two crystals I and II serve
as monochromators. The sample is positioned at I11.
The rotation axes of the three crystals lie in the
horizontal plane of the diffractometer. All three axes
are therefore perpendicular to the plane of the paper
in Fig. 1, whereas the normals of the diffracting planes
of the three crystals are parallel to the plane of the
paper, lying in the vertical plane of the diffractometer.

(a) The characteristics of the beam - divergence and
wavelength spread recorded by the sample

The monochromator consists in two perfect Si crys-
tals in the parallel (1, —1) arrangement ( Pinsker, 1978;
Laue, 1960), with the scattering vector h,;, normal to
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Fig. 1. The arrangement of the triple-crystal system used at the
synchrotron-radiation source at HASYLAB.

the rectangular surfaces (80x40 mm) of the 5mm
thick plane-parallel-crystal plates. The wavelength A
is selected from the continuous spectrum of the
incident X-ray beam according to the fixed angle 6,,,
(Fig. 1). The monochromatic beam, diffracted by the
(111) plane of the first crystal, is diffracted once more
by the (111) plane of the second crystal. Owing to
the second reflection and the possible shift of the
second crystal in the direction x (Fig. 1) the path of
the beam impinging on the crystal sample and there-
fore the sample positioning can be held fixed and
does not depend on the wavelength.

The geometry of the double-crystal mono-
chromator in reciprocal space is given in Fig. 2. The
(111) planes of the two crystals are parallel; the
respective reciprocal-lattice vectors are therefore anti-
parallel. For the determination of the divergence and
wavelength spread of the beam reflected successively
by the two monochromator crystals, the FWHMs are
estimated as a function of the beam characteristics
as well as of the mosaicity of the crystal, given in R-92.

In R-92, §11.A.1, it was shown that an ideally
perfect crystal sphere with radius r is represented in
reciprocal space by the replacement of the lattice
‘points’ by lattice spheres with radius € = 1/r. Apply-
ing this concept to the two ‘very big’ (‘almost infinite’)
perfect monochromator crystals, the reciprocal-lattice
points of the Si crystals in Fig.2 can therefore be
represented approximately by dimensionless mathe-
matical points. [The applicability of this approxima-
tion will be discussed further in (c)].

11

Fig. 2. The geometry of the double-crystal monochromator in
reciprocal space.
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Table 1. The Bragg angle and the Darwin width of the
111 reflection of the Si monochromator crystals and the
vertical divergence 8, and wavelength spread (AA/A),
of the synchrotron-radiation beam at HASYLAB
(E =4.5 GeV) calculated for various wavelengths

Lattice parameter of Si: a = 5.4305 A.

A (A) 6(°) 46, (°) 5.(°)  (4A/A), (x107%)
0.3 2.74 0.0004 0.0059 22
0.5608 5.13 0.0007 0.0077 15
0.7107 6.51 0.0009 0.0085 13
1.0 9.18 0.0012 0.0099 11
1.3 11.97 0.0016 0.0110 9
1.5418 14.23 0.0019 0.0118 8
1.8 16.68 0.0022 0.0126 7
2.0 18.60 0.0025 0.0132 7
2.2 20.54 0.0028 0.0138 6

The natural vertical divergence of the beam
incident on the monochromator system is mainly
determined by the radius R and energy E of the
storage ring. For R=12.12m (DORIS, Hamburg)
and E =4.5 GeV (Materlik, 1982), the divergence (°)
depends on the wavelength according to

8, = 0.008684(A/0.743)%4%*, (3)

In Table 1 the divergence defined in (3) is given for
various wavelengths A.

In Fig. 2, each ray between the limiting rays a and
b of the synchrotron-radiation beam with divergence
8,, incident on the first monochromator crystal I,
comprises the whole range of wavelengths of the
continuous spectrum. But only those wavelengths of
each ray whose corresponding Ewald sphere passes
through the zero point of the reciprocal lattice as well
as through the point 111 can be diffracted by the
(111) plane. The centres of the possible Ewald spheres
are the intersection points between the bisector of the
reciprocal-lattice vector h,;; and the respective
incident rays. The maximum wavelength of the reflec-
ted beam depends on ray a; the minimum wavelength
depends on ray b. It is obvious from Fig. 2 that the
divergence of the reflected beam is equal to the diver-
gence of the incident beam. But the wavelengths of
the limiting rays a and b are different. It is also obvious
from Fig.2 that, in the parallel arrangement of the
monochromator crystals, the second reflection affects
neither the divergence §, nor the wavelengths corre-
sponding to the particular rays within a and b. With
use of the Bragg equation and its derivative, it is
easily deduced from Fig. 2 that the wavelength spread
is related to the divergence by the expression

(AA/A),=[sin (8,,,+8,/2)
—sin (60,,, —6,/2)]/sin 6,,,
=§,/tan 0,,,, (4)

where AA = Ay~ Amins A is the wavelength of the
central ray and 6,,, is the kinematical Bragg angle.
Values for the wavelength spread calculated for

various wavelengths, using the appropriate §,, are
also given in Table 1.

However, the divergence §.,, and wavelength
spread (4A/A) s recorded by the sample crystal is
much smaller than 8, and (AA/A),. Since the diver-
gence of the beam emitted by the synchrotron radi-
ation source is not altered by the monochromator
system, the actual maximum divergence §,,,, recorded
by the sample can be estimated according to (Fig. 3a)

tan (8,a,/2) = (s/2+ 1)/ L, (5a)

where s is the vertical dimension of the source, r is
the radius of the crystal sphere and L is the distance
between the source and the sample. It follows from
(5a) that 8,,,, depends solely on geometrical factors
and is independent of the wavelength. The maximum
divergence 8, is related to FWHM 4, (Fig. 3b)
by a factor f=1:

6crysl :famax . (Sb)

S and therefore 8. cannot be calculated exactly
because the intensity distribution function I(8) of
the part of the beam impinging on the crystal is not
known. But if f can be estimated experimentally then,
from (5) and (4), calculation of 8.y and (AA/A) crye
for various samples and wavelengths is straightfor-
ward. In this case, 8, has to be replaced by 6., in (4).

(b) The FWHM of the crystal sample

The geometry of the Bragg reflection at the sample
positions IIla and IIIb in reciprocal space is given
in Figs. 4(a) and (b), respectively. In Fig. 4(a) the
crystal is arranged antiparallel with respect to the
second monochromator crystal; in Fig. 4(b) it is
arranged parallel.

In contrast to the monochromator crystals, whose
inclination to the incident beam is given by the fixed
angle 6,,,, the sample crystal is rotated during
intensity measurement. Fig. 4 corresponds to Fig.
3(d) in R-92 except that in the latter it is assumed

sample

Smax
(b)

Fig. 3. Derivation of (a) §,,,, (b) Brynt-
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that all the divergent rays impinge on the crystal with
the same wavelength spread 4A/A. In Fig. 4 of this
paper the minimum wavelength corresponds to the
ray b and the maximum wavelength corresponds to
the ray a of the rays reflected by the monochromator
system. This fact mainly affects the FWHMs corre-
sponding to the parallel arrangement given in
Fig. 4(b).

From the reasoning given in R-92, due to the diver-
gence b, two limiting Ewald spheres have to be
drawn, the smallest for ray a with radius r{ =1/A,.,
and the largest for ray b with radius r3 =1/ Ay,.

For simplicity, the crystal is assumed to be com-
posed of perfect spherical mosaic blocks with a
mosaic spread 7. Owing to the finite radius r of the
mosaic blocks, the region in which the corresponding
reciprocal-lattice ‘sphere’ with radius e=1/ris in a
reflection position is broadened further. During rota-
tion of the crystal about an axis normal to the plane
of the paper, all the reciprocal-lattice ‘spheres’ are
rotated about the zero point O of the lattice. The
reciprocal-lattice ‘sphere’ is first in a reflection posi-
tion at P, and is last in a reflection position at P}
(see R-92 for details). The peak width A6, for the
antiparallel arrangement, shown in Fig. 4(a), is there-

ITIIa

(a)

IITb

d74:(Siy

(b)

Fig. 4. Geometry of the Bragg reflection at the sample positions
(a) 111a and (b) 111b in reciprocal space.

fore given by the angle P,OP;,

A0y = 8+ ey — 81+ 7 (6a)

with
8, =arccos {[r¥*+d¥*—(rf—¢)’1/(2rd})}, (6b)
8,=arccos {[ri>+d}* — (rf+ €)1/ (2r¥d¥)}, (6¢)

where df is the length of the reciprocal-lattice vector.
For the parallel arrangement, depicted in Fig. 4(b),
the expression

A6,=18,—8cry— )|+ 7 (7a)

is obtained, with §,, defined in (6b, ¢) for the case
d¥>d},, of Si, and

8, =arccos {[rF?+d¥* —(r¥+€)*)/(2r*d¥)} (7b)
8,=arccos {[r¥?+d¥ —(r¥—e)’ )/ 2rid¥)} (T¢)

otherwise. The formula (7a) reflects the well known
fact that, for d¥(sample) = d{¥(monochromator), the
FWHM depends only on the crystal characteristics
(mosaic block size and mosaic spread of the crystal;
Darwin width of a perfect-crystal plane-parallel
plate). Moreover, from Figs. 4(a) and (b) and from
the comparison of (6a) with (7a), the well known
fact can be deduced that the peak width recorded in
the parallel arrangement is smaller than that of the
antiparallel arrangement.

Insertion of the FWHMs for the divergence 8, the
mosaic spread n and the wavelength spread 4A/A
results in the FWHM 486, of the peak width of the
sample. In Figs. 5 and 6, 46, is plotted against 6. The
dependence of 46, on the wavelength spread is shown
in Fig. 5. The curves of Fig. 5, calculated with n =6 =
£=0 in (6a), correspond to the values of the
wavelength spread recorded by a sphere with radius
150 wm [(AA/A)yig given in Table 2 for various
wavelengths]. It is clear from Fig.5 that the peak

FWHM [ degrees])

Fig. 5. Dependence of 46, on the wavelength spread for various
wavelengths. (6§ = =¢=0; 4A/A calculated according to (4)
using &, recorded by a crystal sphere with r=150 um. See
also Table 2(a). Curves 1,2,...,9: A =0.3, 0.5608, 0.7107, 1.0,
1.3, 1.5418, 1.8, 2.0, 2.2 A, respectively.
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Table 2. FWHMs of YIG
8v1 =0.0016°% 8y and (4A/A)y,c calculated using (5) and (4) with f=0.75, L=37310 mm, s = 1.1 mm, ry;g =150 pm. FWHMs in
107*°. Interplanar spacings: dog, = 3.095; d,3,=2.428 A. Uncertainty of measured FWHMSs~ half of the step width of the @ scan
[~ £0.0015° in (b)].

(a) Comparison of the FWHMs of the 004 and 134 reflections of YIG for various wavelengths

A (A) 1/ (um)  (AA/A)yi (X107%) 7 hkl Fexe (pm) A6y 40, A8, a6,
0.3 393 59 9 004 - - - - -
134 81.9 <1 3 49 50(5)
0.5608 70 3.1 13 004 7.0 7 51 97 100 (5)
134 30.7 1 9 59 50(5)
0.7107 38 2.5 36 004 53 9 68 136 130 (5)
134 20.2 1 14 87 80 (5)
1.0 37 1.7 45 004 39 13 92 170 175 (10)
134 16.7 2 17 100 90 (10)
13 18 1.3 114 004 2.8 17 128 275 290 (10)
134 10.2 2 28 180 180 (10)
1.5418 12 1.1 181 004 23 21 161 376 390(15)
134 73 2 40 260 270 (15)
1.8 19 0.9 135 004 2.2 24 172 341 345(15)
134 9.1 3 33 207 200(15)
2.0 15 0.8 150 004 1.9 27 198 381 340 (10)
134 7.4 3 41 230 250 (10)
2.2 11 0.8 202 004 1.7 31 226 462 450 (30)
134 - - - - -
(b) Experimental and theoretical FWHMs of YIG for A =1.5418 A
hkl ] Fo  rep(um) 464,5, 46, A6, A6,
21 1 8.77 101 1.5 208 78 286 270
00 4 14.42 773 23 214 161 376 390
22 4 17.76 566 29 219 105 324 345
13 4 18.51 110 73 220 40 260 270
15 2 19.94 187 5.8 221 47 269 270
04 4 20.62 187 5.8 222 46 269 285
23 5 22.57 148 6.5 225 38 263 270
11 6 22.57 222 53 225 47 272 270
44 4 25.56 813 22 229 104 333 315
04 6 26.68 805 2.2 231 100 331 330
25 5 27.23 145 6.5 231 33 265 260
24 6 2777 643 2.6 232 82 314 300
06 6 31.89 106 7.4 239 27 265 285
24 8 34.80 558 29 243 65 308 300
55 6 35.27 127 6.9 244 27 271 270
46 6 35.74 507 31 245 59 305 285
0210 39.42 171 6.1 252 30 282 300
56 7 40.77 124 7.0 255 26 280 285
46 8 42.11 497 32 257 56 313 285

width due to 4A/A increases with the Bragg angle 8 ation of the intensity of the incident X-ray beam due
according to to absorption and extinction within the mosaic blocks
is negligibly small. Within the limits of the kinematical

Af~(AA/A)tan 6. (8)

Since 8, is constant, the peak width decreases with
increasing wavelength according to (4). The variation
of A6, with the radius of the mosaic blocks is shown
in Fig. 6: the smaller is the radius, the larger is the
increase of the curve for small values of 6. The effect L
of » and 6 on A6, does not depend on 6. The entire oo
curve determined by r and AA/A is shifted upwards ‘
according to & + 7.

degreas

FFWEHIM

(¢) The significance of the radius r of the perfect-crystal I o T T
mosaic blocks 4

o~
<

6
The mosaic crystal is a model used only in the Fie 6 Depend ¢ 40 he radius of th  block
. . _ . 18. 6. ependence o h ONn the raaius of the mosaic OCKS.
kinematical theory. The perfect-crystal mosaic blocks Calculated for A =0.7107 A, AA/A =0.000247, § = 5 = 0. Curve
are assumed to be small enough for the kinematical 1: r=1pum; curve 2: r=5pum; curve 3: r=20pum; curve 4:

approach to be valid, i.e. it is assumed that the attenu- r == 5000 wm.
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theory, twice the radius r used in (6) and (7) corre-
sponds to the mean dimension of the mosaic blocks
in the sample.

However, in the case of high absorption and extinc-
tion and ‘large’ mosaic blocks, the incident intensity
may be totally reflected and/or absorbed during its
path through the perfect-crystal block. In this case,
the region in reciprocal space for which the reflection
condition is fulfilled, i.e. the radius of the correspond-
ing reciprocal-lattice ‘sphere’, is determined by the
penetration depth of the incident beam in the mosaic
block.

Following Laue (1960), the intensity is attenuated
by absorption and extinction according to

I=1,exp[—(u+o0o)t], (9a)

where t is the penetration depth in the direction of
the beam, u is the linear absorption coefficient and
o, which is due to extinction, is deduced in the
framework of the dynamical theory. In the case of
the synchrotron-radiation beam, i.e. a beam polarized
normal to the reflection plane, o is related to the
extinction length L., according to

o= l/chl’
where L., is defined by
Lex1= Vcell/(zr()/\thI)a (9C)

with r,=2.818 fm the classical electron radius, V..,
is the volume of the unit cell and F,, is the structure
factor [Laue (1960), expressions (23.1), (28.24) and
(28.26)]. For t =2/(u + o) the intensity is reduced to
about 10% of the incident intensity.

Therefore, in the case when half the penetration
depth

(9b)

1/2=1/(p+0)=r (10a)

is smaller than the radius r of the mosaic blocks, the
half-penetration depth, r,,,, where

e=1/re=pnto, (10b)

has to be used instead of half the mean dimension
of the mosaic blocks, r, in (6) and (7).

In R-92 [equations (3aq, b, ¢)], it was shown that,
for AA/A = 8 = =0, the peak width defined in (6a),
which is, in this case, solely due to the mosaic-block
radius r (or the penetration depth r.,), can be
approximated by

A6, =2eA/sin 26. (11a)

In the case of high extinction but negligible absorp-
tion, the FWHM can therefore be expressed approxi-
mately as

A8, =2/ (Ley sin 20). (11b)

Values obtained for the peak broadening due to r
or r,, of a small (limited) perfect-crystal sphere
bathed in the X-ray beam will be compared in the

next section with the Darwin width, i.e. the width of
the diffraction pattern for a plane-parallel-crystal
plate in the symmetrical Bragg case, in which the
diffracted wave emerges through the entrance surface.
The divergence and wavelength spread of the beam,
incident on the perfect-crystal plate with unlimited
lateral extension and thickness, are assumed to be
negligible, 8 = AA /A ~0. The Darwin width, deduced
in the framework of the dynamical theory [Laue
(1960) formula (28.29) in connection with (26.49)] is
given by

A8, =2A/ (27, sin 26) (12)

and is therefore a factor of 1/27 smaller than (11b).
The polarization factor p is neglected in (12) since,
for synchrotron radiation, p =1.

Values of the Darwin width of the 111 reflection
of the Si monochromator for the wavelength used in
the experiment are also given in Table 1. For all
wavelengths the Darwin width is about one order of
magnitude smaller than the divergence of the incident
synchrotron beam. The broadening due to the mono-
chromator was therefore neglected in §(a).

Comparison of measured and calculated FWHMs

Bragg intensity profiles of various reflections of the
cubic YIG (garnet structure) and the cubic Si
(diamond  structure), measured at various
wavelengths, are given by Werner (1992) and by Ross-
manith, Werner, Kumpat, Ulrich, Bengel, Eichhorn
& Almen (1993). The measurement of the Bragg
reflections was carried out in the routine w-step scan-
ning mode with the Huber four-circle diffracto-
meter at HASYLAB (DESY, Hamburg, Germany).
FWHMs of intensity profiles of CaF,, measured with
the Stoe five-circle diffractometer at HASYLAB were
reported by Hoche et al (1986). Details of the
measurement and data reduction are fully described
in the above-mentioned papers.

It will be shown in the following that the values of
all the experimental FWHMs of all three crystals can
be explained by use of the assumption that these
crystal spheres consist of one large perfect-crystal
block in the core of each sphere, surrounded by many
small blocks in the vicinity of the sphere surface,
which may be due to mechanical damage during
grinding. For such crystals, the condition r>r.,, is
very often fulfilled. They are therefore very well suited
for testing the formulas proposed in the previous
section.

(a) The FWHMs of YIG - a case of severe absorption
and extinction

The YIG single crystal, ground to a sphere with
radius 150 um, was supplied by Professor W.
Tolksdorf (Philips-Forschungslaboratorium, Ham-
burg, Germany). The synthetic Y;FesO,, yttrium iron
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garnet crystallizes in space group la3d with eight
formula units per cell [Wyckoff notation: Y** in
24(c), Fe*" in a 16(a) octahedral site, Fe’* in a 24(d)
tetrahedral site, O°~ in 96(h)]. The celi dimension is
12381 A.

The measured intensity profiles of YIG were re-
analysed with the help of the program PROFIL
(Rossmanith, 1992b). The FWHMs were obtained,
fitting an asymmetric modified pseudo-Voigt distribu-
tion to the measured intensity profiles of the Bragg
reflections.

Because of the special positions of the metal atoms
in the structure, there are rather weak reflections with
contributions from O atoms alone (e.g. Fy3,=110)
and very strong reflections with contributions from
all atoms (e.g. Fy4 = 773). (The isotropic temperature
parameters used for the calculation of the structure
factors F, are Bg gy =0.42, 0.35, 0.30 A2) In par-
ticular, the strong reflections are therefore known to
be affected by severe extinction (Bonnet, Delapalme,
Fuess & Thomas, 1975). Because of the K-absorption
edge of Fe, the absorption for wavelengths greater
than 1 A is appreciable. The FWHMs of the YIG-
crystal sphere are therefore very well suited for the
examination of the formulas for large perfect-crystal
mosaic blocks with r>r.,, given in the preceding
chapter.

The FWHMs of YIG for wavelengths between 0.3
and 2.2 A, obtained from profile analysis, are presen-
ted in Fig.7 and Table 2. It is obvious from Fig.7
that there is a large spread in the FWHMs of YIG;
the smallest width (0.003°) was obtained for the 211
reflection with A =0.3 A, the largest measured width
(=0.045°) was obtained for the 004 reflection with
A=22A. In Table 2(b) the complete set of widths
measured at A =1.5418 A is compared with calcula-
tions. In Table 2(a) measured and calculated widths
of the strong 004 reflection are compared with those
of the weak 134 reflection for all the wavelengths
used in the experiment.

For A=03A the absorption coefficient u is
small, viz 1/ =393 um (see Table 2a) is larger than
the diameter of the YIG sphere. Moreover, owing to
the small wavelength [see (9¢)], the extinction lengths
of the reflections and consequently the corresponding
rex. defined in (10a) are large. With the assumption
that the crystal model introduced above is appropriate
to YIG, itis implied that the incident beam can deeply
penetrate the large core mosaic block. In the case of
the rather weak 134 reflection, for example, r., =
81.9 wm (see Table 2), the diffraction therefore mainly
takes place in the core mosaic block, whose radius is
assumed to be larger than r.,,. The broadening of the
intensity profiles due t the enlargement of the
reciprocal-lattice points to ‘spheres’ is consequently
negligibly small, being 46,,,=0.0003° for the 134
reflection and lying between 7 and less than 1x 10 *°
for all the other reflections. As a consequence of the
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Fig. 7. FWHMs of YIG for various wavelengths. Symbols corre-
spond to experimental FWHMs. Lowest curve: calculated width
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(AA/A)yi; and 8y, ; upper curve: calculated width due to
(3A/A)vics Bvi; and 7.
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proposed crystal model the FWHMs of Fig.7(a)
should therefore be mainly due to AA/A, 8 and 7, i.e.
the measured FWHMs should be parallel to a func-
tion that is similar to the curves given in Fig. 5.

The measurement at A =0.3 A was therefore used
to adjust the factor f, defined in (5b). For this purpose,
8 and therefore AA/A, recorded by the YIG sphere,
were calculated according to (5) and (4), with s=
1.1mm, L=37310mm and ry;=150 um and the
middle curve of Fig. 7(a) was calculated according
to (6) with e = n =0. The best agreement between the
slope of the curve and the measured FWHMs was
obtained with f =0.75, resulting in 8y, =0.0016° and
AAX/A =0.00059. Since 8y does not depend on the
wavelength, once f has been adjusted, the wavelength
spread for all the other wavelengths used in the
experiment can be calculated according to (4), with
use of the Bragg angles of the monochromator system
(see Table 1). The results for (4AA/A)ys, obtained
in this way, are given in Table 2(a). They have been
used also to produce Fig. S.

In Figs. 7(a)-(i), the lowest curve in each diagram,
which passes through the origin, represents the calcu-
lated A6, due to the wavelength spread AA/A only
and corresponds to the appropriate curve in Fig. 5.
The middle curve is due to AA/ A plus the divergence
4 and the uppermost curve corresponds to the FWHM
due to 4AA/A, 8 and the mosaic spread 7.

With the assumption of the perfect-crystal model
introduced above and with knowledge of a value for
the factor f, the parameters 8y,g, (AA/A)yg and € =
1/ r.,. can therefore be calculated for all reflections
at all wavelengths from only the geometry of the
experimental equipment and the structure of the
sample. The parameter 7, which is still unknown, can
consequently be determined for each wavelength by
use of the relation

n =Z (Aoo _AOAA,B,F)/ n, (13)

where A6, is the measured FWHM and 46,, ;. is the
FWHM calculated according to (6), with the param-
eters (AA/A)yic, Svic and r.,,, but with n=0. It is
clear from (13) that the mosaic spread 7 obtained in
this way is affected by the error of the measured
values.

The mosaic spread obtained according to (13) is
also given in Table 2(a) for all the wavelengths used
in the experiment and corresponds to the distance
between the middle and uppermost curves in
Figs. 7(a)-(i). Whereas the very small values
obtained for n at A =0.3 and 0.5 A may be due only
to the uncertainties of the measurement, values of 7
for the other wavelengths seem to have physical sig-
nificance. 7 increases with decreasing 1/ u, having a
local maximum for A =1.5418 A in the vicinity of the
K-absorption edge of Fe. r.,, (see Table 2), which is
a measure of the penetration depth in the crystal, is

large for small wavelengths but is only a few pm for
larger wavelengths. In the case of small wavelengths,
therefore, diffraction occurs mainly in the large core
mosaic block, corresponding to 7 ~0, whereas at
larger wavelengths diffraction occurs in the small
mosaic blocks at the surface of the sphere, which are
tilted relative to each other according to the mosaic
spread 7.

The mosaicspread 7 can only successfully be deter-
mined from (13), provided that the difference between
the measured FWHMs, A46,, and the calculated
FWHMs, 46,, ;. , corresponding to the uppermost
curve in Figs. 7(a)-(i), can be entirely related to the
peak broadening A6,,, due to the penetration depth
r.x. Of the X-ray beam in the crystal, i.e. provided that
the width calculated according to (10) and (6) is an
adequate approximation.

In Table 2(b) the measured FWHMs, A4, of Fig.
7(f) are compared with the theoretical ones, calcu-
lated for A =1.5418 A. A6, is the FWHM calculated
with the parameters AA/A, 8 and 7 given in Table
2(a) and r,,, given in the fourth column of Table
2(b). Therefore, A6,,,=A46.— Ab,, 5, can be calcu-
lated, which is the contribution to the width due
to absorption and extinction. A6, can also be esti-
mated to a very good approximation using € =1/r,,,
in (11a).

It can be seen from Table 2 that, at the chosen
wavelength and for all reflections, the contribution
A#,,, is considerable. According to (11a) and Fig. 6,
Ab,,, is large for small r.,, and small Bragg angles.
The largest contribution is found for the very strong
004 reflection, being of the same order of magnitude
as the broadening due to 4A, 8§ and ». But, owing to
the small Bragg angle, the contribution for the weak
211 reflection is also considerably large. Comparison
of A6, and A6, shows an excellent agreement between
the measured and calculated FWHMs of all reflec-
tions, 46, — A6, being comparable to the uncertainty
of the measurement, indicating that 46, — A6,, 5., is
a function of the penetration depth r,,, and that the
expressions (10a), (10b) in connection with (6a)-(6¢)
are very well suited for an approximate calculation
of FWHMs of a spherical sample consisting of mosaic
blocks with r>r,,,.

Similar satisfactory results are obtained for all the
other FWHMs represented in Figs. 7(a)-(i). This is
demonstrated in Table 2(a), where the very strong
004 reflection is compared with the weak 134 reflec-
tion. For all wavelengths the agreement between A6,
and A6, for both reflections is surprisingly good,
despite the simple theory underlying the calculations.
The greatest deviation between measurement and
calculation is found for large wavelengths, where r.,,
varies between ~2 pm for the strong reflections and
~7 wm for the weak reflections. This deviation can
be explained by the reasonable assumption that the
mosaic spread in the vicinity of the sphere surface
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depends to a high degree on the penetration depth
of the X-ray beam as well as on the part of the crystal
surface illuminated by the incident beam. Under such
circumstances the mosaic spread can no longer be
supposed to be a constant for all reflections.

In the literature, the ‘dynamical perfect-crystal
peak broadening’ is frequently assumed to be of the
order of the Darwin width A6, defined in (12), and
is therefore usually neglected in approximations for
the FWHMs as given, for example, in (2). But Table
2(a) indicates unambiguously that the Darwin width,
which is given in the seventh column, is an inadequate
approximation for a crystal sphere bathed in an
incident beam, i.e for the routine experimental
arrangement in crystal structure analysis. Moreover,
Table 2(a) makes clear that 46,,,, which contributes
about 50% to the width of the strong 004 reflection,
cannot be neglected in calculating FWHMs.

The very good agreement between the measured
and calculated FWHMs of the YIG crystal confirms
the proposed crystal model and the formulas given
for A6, in the preceding section. It is obvious from
the figures and tables that, whereas for small
wavelengths the width is mainly determined by the
beam characteristics, for large wavelengths the broad-
ening is mainly due to the characteristics of the
sample, A6, + 7.

(b) The FWHMs of Si - a case of severe extinction
but low absorption

The Si single crystal, ground to a sphere with
radius 180 um, was also supplied by Professor
W.  Tolksdorf (Philips-Forschungslaboratorium,
Hamburg, Germany). Si crystallizes in space group
Fd3m with the eight atoms in the unit cell in special
positions [Wyckoff notation: 8(a)]. The cell
dimension is 5.431 A.

As in the case of YIG, the FWHMs 46, of Si were
estimated using the program PROFIL. The experi-
mental A6, for the different wavelengths are given in
Fig. 8. Selected FWHMs are also listed in Table 3(a).
Since the factor f is already known from the analysis
of the YIG data, the divergence 85; and wavelength
spread (4A/A)g;, recorded by the Si sphere, can be
calculated according to (5) and (4). The results are
given in Table 3(a). Therefore, the lowest and middle
curves in Figs.8(a)-(f), which correspond to the
respective curves in Figs. 7(a)-(f), can be drawn.
rexi, Which is also given in Table 3(a) for the reflec-
tions that are most affected by extinction, can be
calculated with the help of Tables 3(a) and (b), in
which the linear absorption coefficient, the inter-
planar spacings and structure factors of these reflec-
tions are listed. (Isotropic temperature parameter
B =0.45A%)

It is obvious from Fig. 8(a) that, as in the case of
YIG, for the wavelength A =0.3 A all the measured

FWHMs are in very good agreement with the middle
and upper curves, which almost coincide at this
wavelength. From Fig.8(a) it may therefore be
deduced that the FWHMs are mainly dueto AA/A + 8
and that the corresponding mosaic spread 7 as well
as the broadening due to extinction and absorption,
A6, of all the reflections are negligible. The smallest
value for the penetration depth, 2r.,, =45 um, was
found for the 044 reflection; the largest, 2r., =
893 wm, was found for the 12,12,12 reflection. If it
is assumed that the Si crystal also consists of one
large core mosaic block, surrounded by small blocks
at the crystal surface, and that the diameter of the
core mosaic is of the order of the diameter of the
crystal sphere, @ =360 pum, it follows that the largest
value of A4,,,, obtained for A =0.3 A (see Table 3a)
is A6.,,=0.0005°, and the smallest value is less than
0.0001°, in agreement with the experiment. The
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Fig. 8. FWHMs of Si for various wavelengths. Symbols correspond
to experimental FWHMSs. Lowest curve: calculated width due
to (4A /A ), only; middle curve: calculated width due to (4A /A )g;
and &,; upper curve: calculated width due to (4A/A)g;, 8,
and 7.
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Table 3. Results for Si

8s, = 0.0017° &, and (AA/A)g; calculated with f=0.75, L =37 310 mm, s = 1.1 mm, rg; = 180 um. FWHMs in 1074

(a) Comparison of FWHMs of Si reflections for various wavelengths

A(A) 1/p (pm) (AA/A)y6(X107%) n h k1l r,(um) A6, A6, A9,
0.3 6671 6.1 2 044 224 5 79 80(10)
0.5608 1309 33 6 111 8.5 42 82 90(10)

022 7.5 30 80 90(10)
004 8.9 18 80 80 (10)
0.7107 667 2.6 17 111 6.7 54 104 95(5)
022 59 38 100 95(S)
004 7.0 23 97 95 (5)
1.0 248 1.8 34 022 4.1 55 134 142 (5)
113 6.3 32 116 108 (5)
004 49 34 126 128 (5)
331 7.3 21 118 113 (5)
13 116 14 73 022 31 74 193 227 (20)
113 4.7 43 168 160 (20)
004 37 47 181 183 (20)
331 5.5 30 170 162 (20)
115 6.3 24 178 165 (20)
044 4.9 31 195 198 (20)
1.5418 70 1.2 141 022 2.6 92 279 335(19%5)
113 39 54 248 225(15)
004 3.1 61 266 260 (15)
331 4.6 40 252 225(15)
(b) Interplanar spacings and structure factors of the Si reflections
hk i dy (A) F.
111 3.137 59.07
022 1.921 67.74
113 1.638 44.34
004 1.358 56.57
331 1.246 37.83
115 1.045 3290
044 0.960 42.80

vanishingly small n value can again be explained by
the fact that diffraction takes place mainly in the large
core mosaic block.

The excellent agreement between the middle curve
and the experimental FWHMs in Fig. 8(a) confirms
the fact that the factor f, which was fitted to the YIG
data, is also applicable to the Si data. Moreover, in
accordance with the prediction, the slopes of the
experimental FWHMs, shown in Figs. 8(a)-(f),
decrease with increasing wavelengths. It is due to the
decreasing slope that, for example, the width for
6 ~40° in Fig.8(d), A46,=0.015° is half that in
Fig.8(a), A6, =0.03°, confirming the fact that the
divergence recorded by the crystal, &, depends
according to (5) solely on geometrical factors and is
independent of the wavelength.

The mosaic spread n can be fitted to the data in
the same way as for the YIG crystal with use of (13).
It should be pointed out that 7 is the only parameter
that was fitted in the case of Si; all the other param-
eters - &, (AA/A)g; and r., - are calculated from the
geometry of the experiment and the structure of the
Si example. As in the case of YIG, the very small
values of n for small wavelengths [Figs. 8(a) and
(b)] are probably due to the uncertainties of the
measurement, whereas for large wavelengths, where
r.. is again small (see Table 3a) and diffraction takes

place in the vicinity of the surface, n is the mosaic
spread of the small mosaic blocks, due to damage
from grinding the Si sphere.

For wavelengths 0.5 A, r.,. (see Table 3a) is small
and consequently Aé,,, is considerable for all reflec-
tions in the low-6 region. As can be seen from Figs.
8(b)-(f), the broadening due to extinction cannot be
neglected for larger wavelengths. This is especially
obvious from Figs. 8(b) and (¢), in which an enlarge-
ment of the width with decreasing Bragg angle, similar
to that presented in Fig. 6, is observed. This enlarge-
ment cannot be explained by an alternative choice of
the parameters 6, AA/A and 7, but it is well accounted
for by Aé.,,.

For the reflections most affected by Aé.,,, the calcu-
lated and observed FWHMs are compared in Table
3(a). Although the mosaic spread may vary for
different reflections in the case of small r,,,, the agree-
ment between theory and experiment, especially for
small wavelength, i.e. small 7, is satisfactory.

(¢c) The FWHMs of CaF, - comparison with results
given in the literature

Hoche et al. (1986) analysed the FWHMs of CaF,
with the aim of determining the mosaic spread of the
sample. Two crystal spheres with radii 45 and 3 um
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were investigated with synchrotron radiation at
HASYLAB. The X-ray beam was monochromatized
by a flat Ge (111) double monochromator. The
measurements were carried out with the wavelengths
A=0917 and 1.714 A.

CakF, crystallizes in space group Fm3m with Ca in
the special position 4(a) and F in the special position
8(c) (Wyckoff notation). The cell dimension is 5.45 A.
Because of the special positions of the atoms, reflec-
tions with h + k+ [ =4n+2 are very weak; reflections
with h+ k+[=4n are strong. (Isotropic temperature
parameter B, r=1.08 A%)

The results obtained with the 3 wm crystal are not
considered here since it cannot be deduced from the
paper by Hoche et al. (1986) how the FWHMs of the
reflection profiles, ‘which were often divided in separ-
ate peaks’, have been determined. The results given
for the 45 um crystal are reproduced in Fig.9 and
Table 4.

The curves in Fig. 9 have the same meaning as those
in Figs. 7 and 8. Since the monochromator system is
different from that used for the YIG and Si measure-
ments, the factor f, obtained for the Si mono-
chromator cannot be used. Therefore, in the case of
CaF,, two parameters have to be adjusted: the factor
f, determining the divergence 8 and the slope of the
curves in Fig. 9, and the mosaic spread 7. The best
agreement between experimental and theoretical
FWHMs was obtained with f = 1. The corresponding
Ocar, and (AA/A)c,p, are given in the heading of
Table 4(a).

With the assumption of a crystal model for the
CaF, sphere similar to that of YIG and Si, i.e. the
crystal sphere is assumed to consist of one large
perfect core block surrounded by small blocks near
the surface of the sphere, the radius of the reciprocal-
lattice ‘spheres’ is given by £ = 1/r,,, and the mosaic
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Fig. 9. FWHMs of CaF,. Symbols correspond to experimental
FWHMs given by Hoche er al. (1986). (a) Lowest curve: calcu-
lated width due to (4A/A)c,y, only; middle curve: calculated
width due to (4A/A)c,r, and 8¢,¢,; upper curve: calculated
width due to (4A/A) ¢4, 8car, and 1. (b) Lower curve: calcu-
lated width due to (4A/A)¢,;:, only; upper curve: calculated
width due to (4A/A) ¢, and 8¢y,
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Table 4. Experimental and theoretical FWHMs
of CaF,

(a) A=0917 A

8car, = 0.0018° and (4A/A) ,p, = 0.00023°, calculated with f=1.0,
L=37310mm, s=1.1mm, rep,=45um;, 7=00173° 1/p=
147 pm. FWHMs in 107%°,

hkl ] F, 7. (um) 46, A6, A6,
111 8.4 60.6 5.0 73 284 286 (14)
200 9.7 1.3 92.5» reyy, 7 221 209(15)
220 13.8 90.9 34 68 291 281 (4%)
222 16.9 6.1 379 5 236 225(17)
400 19.7 64.7 4.7 35 273 252 (18)
420 22.1 7.5 324 5 249 245 (20)
422 243 50.2 6.0 23 274 261(23)
511 259 272 10.7 13 267 278 (12)
440 28.4 413 7.2 17 279 263 (35)
531 299 234 12.3 10 276 282(21)
620 32.2 35.2 8.4 14 287 294 (15)
533 335 20.6 13.8 8 286 270(24)
711 369 18.3 15.3 7 297 294 (20)
800 423 24.1 12.0 9 319 356 (32)
820 439 6.4 36.7 3 320 363 (24)
(b) A=1714A

8¢ur, = 0.0018° and (AA/A) .y, = 0.00012°, calculated with f=1.0,
L=37310mm, s =1.1 mm, r,,., =45 um; 1/ p =25.6 pm. FWHMs
in 107°°, i

hk1 0 Fex (pm) A8, 484,55 n 4e,

111 15.8 25 150 38 297 485 (21)
200 18.3 21.5 15 41 212 269 (16)
220 26.4 1.7 143 53 373 569 (33)
311 31.4 34 64 61 334 459 (31)
400 39.0 24 8S 75 381 541(27)
331 433 4.3 46 84 372 502 (30)

spread can be calculated according to (13). The
mosaic spread obtained in this way for A =0.917 A,
7 =0.0173°, is about four to five times larger than the
mosaic spread of YIG and Si at the same wavelength.
Apart from the structure dependence, this large 7
may be due to the smaller radius, i.e. the relatively
larger surface region of the CaF, sphere.

The comparison of the calculated and experimental
FWHMs presented in Table 4(a) shows excellent
agreement between theory and measurement. In par-
ticular, the large broadening due to extinction, 484.,,,
for the strong 111 and 220 reflections and the small
contributions A86,,, for the very weak 200, 222 and
420 reflections are predicted correctly, confirming
once more the usefulness of the crystal model and
the formulas used.

The FWHMs given by Hoche er al. (1986) for
A =1.714 A, which they could not analyse [‘owing to
strong extinction no unique function (2) can be
derived’] are reproduced in Fig. 9(b) and Table 4(b).
The contributions to the width due to the beam
characteristics, 465 4,,,, and due to the penetration
depth r., 46, are also given in Table 4(b). It is
obvious from this table that for small Bragg angles
the contribution due to absorption and extinction
considerably exceeds the contribution due to the
beam characteristics. The mosaic spread, calcu-
lated individually for each reflection, m=
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(A6, — AB8s sr/r — Abexp) hia, is given in the sixth
column of Table 4(b). In accordance with the pro-
posed crystal model, the smallest 7 is found for the
very weak 200 reflection, for which the penetration
depth of the incident beam is comparatively very
large, being about half the diameter of the crystal
sphere. The fluctuation of 7 for the other reflections
with r., between 1.7 and 4.3 .m may once more be
due to the experimental error as well as to the variable
local values of 7 for different parts of the sphere
surface illuminated by the incident ray.

Concluding remarks

In the preceding section it was shown that, using the
proposed resolution function, the beam characteris-
tics - divergence and wavelength spread - as well as
the characteristics of the sample - mosaic spread and
mosaic block size - can be determined from com-
parison with experimental FWHMs, measured at
different wavelengths. It was also shown that the
mosaic spread for samples with high absorption
and/or extinction is no longer constant, but may vary
appreciably for different reflections. The integrated
intensities of the reflections measured with syn-
chrotron radiation are strongly dependent on the
varying - and therefore unknown - mosaic structure
of the sample. The difficulty of obtaining integrated
intensities with sufficient accuracy using synchrotron
radiation may partly be due to this fact.
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Abstract

The electronic structures of crystalline lithium oxide
and lithium sulfide have been theoretically investi-
gated within the Hartree-Fock approximation. X-ray
static structure factors are calculated and scattering
factors of O~ and S ions are deduced following
the theoretical model that uses standard scattering
curves for the Li* ion.

0108-7673/93/010091-07$06.00

Introduction

The 0?7, S?7, N*", ... ions are known to be unstable
when free* (Holbrook, Sabry-Grant, Smith & Tandel,
1990) and they present severe convergence problems
in the Hartree-Fock (HF) calculation. To obtain the

* The second molar electron affinities of atomic oxygen and
sulfur at 0 K are 599 (10) and 416 (10) kJ mol !, respectively.
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